Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(29): 34973-34982, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37442800

RESUMO

Li10GeP2S12 is a phosphosulfide solid electrolyte that exhibits exceptionally high Li-ion conductivity, reaching a conductivity above 10-3 S cm-1 at room temperature, rivaling that of liquid electrolytes. Herein, a method to produce glassy-ceramic Li10GeP2S12 via a single-step utilizing high-energy ball milling was developed and systematically studied. During the high energy milling process, the precursors experience three different stages, namely, the 'Vitrification zone' where the precursors undergo homogenization and amorphization, 'Intermediary zone' where Li3PS4 and Li4GeS4 are formed, and the 'Product stage' where the desired glassy-ceramic Li10GeP2S12 is formed after 520 min of milling. At room temperature, the as-milled sample achieved a high ionic conductivity of 1.07 × 10-3 S cm-1. It was determined via quantitative phase analyses (QPA) of transmission X-ray diffraction results that the as-milled Li10GeP2S12 possessed a high degree of amorphization (44.4 wt %). To further improve the crystallinity and ionic conductivity of the Li10GeP2S12, heat treatment of the as-milled sample was carried out. The optimal heat-treated Li10GeP2S12 is almost fully crystalline and possesses a room temperature ionic conductivity of 3.27 × 10-3 S cm-1, an over 200% increase compared to the glassy-ceramic Li10GeP2S12. These findings help provide previously lacking insights into the controllable preparation of Li10GeP2S12 material.

2.
Small ; 19(28): e2300850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36974581

RESUMO

The structural and morphological changes of the Lithium superionic conductor Li10 GeP2 S12 , prepared via a widely used ball milling-heating method over a comprehensive heat treatment range (50 - 700 °C), are investigated. Based on the phase composition, the formation process can be distinctly separated into four zones: Educt, Intermediary, Formation, and Decomposition zone. It is found that instead of Li4 GeS4 -Li3 PS4 binary crystallization process, diversified intermediate phases, including GeS2 in different space groups, multiphasic lithium phosphosulfides (Lix Py Sz ), and cubic Li7 Ge3 PS12 phase, are involved additionally during the formation and decomposition of Li10 GeP2 S12 . Furthermore, the phase composition at temperatures around the transition temperatures of different formation zones shows a significant deviation. At 600 °C, Li10 GeP2 S12 is fully crystalline, while the sample decomposed to complex phases at 650 °C with 30 wt.% impurities, including 20 wt.% amorphous phases. These findings over such a wide temperature range are first reported and may help provide previously lacking insights into the formation and crystallinity control of Li10 GeP2 S12 .

3.
Adv Sci (Weinh) ; 10(5): e2205012, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529956

RESUMO

Li7 La3 Zr2 O12 (LLZO)-based all-solid-state Li batteries (SSLBs) are very attractive next-generation energy storage devices owing to their potential for achieving enhanced safety and improved energy density. However, the rigid nature of the ceramics challenges the SSLB fabrication and the afterward interfacial stability during electrochemical cycling. Here, a promising LLZO-based SSLB with a high areal capacity and stable cycle performance over 100 cycles is demonstrated. In operando transmission electron microscopy (TEM) is used for successfully demonstrating and investigating the delithiation/lithiation process and understanding the capacity degradation mechanism of the SSLB on an atomic scale. Other than the interfacial delamination between LLZO and LiCoO2 (LCO) owing to the stress evolvement during electrochemical cycling, oxygen deficiency of LCO not only causes microcrack formation in LCO but also partially decomposes LCO into metallic Co and is suggested to contribute to the capacity degradation based on the atomic-scale insights. When discharging the SSLB to a voltage of ≈1.2 versus Li/Li+ , severe capacity fading from the irreversible decomposition of LCO into metallic Co and Li2 O is observed under in operando TEM. These observations reveal the capacity degradation mechanisms of the LLZO-based SSLB, which provides important information for future LLZO-based SSLB developments.

4.
Small ; 18(21): e2200266, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35475572

RESUMO

High interfacial resistance and unstable interphase between cathode active materials (CAMs) and solid-state electrolytes (SSEs) in the composite cathode are two of the main challenges in current all-solid-state batteries (ASSBs). In this work, the all-phosphate-based LiFePO4 (LFP) and Li1.3 Al0.3 Ti1.7 (PO4 )3 (LATP) composite cathode is obtained by a co-firing technique. Benefiting from the densified structure and the formed redox-active Li3- x Fe2- x - y Tix Aly (PO4 )3 (LFTAP) interphase, the mixed ion- and electron-conductive LFP/LATP composite cathode facilitates the stable operation of bulk-type ASSBs in different voltage ranges with almost no capacity degradation upon cycling. Particularly, both the LFTAP interphase and LATP electrolyte can be activated. The cell cycled between 4.1 and 2.2 V achieves a high reversible capacity of 2.8 mAh cm-2 (36 µA cm-2 , 60 °C). Furthermore, it is demonstrated that the asymmetric charge/discharge behaviors of the cells are attributed to the existence of the electrochemically active LFTAP interphase, which results in more sluggish Li+ kinetics and more expansive LFTAP plateaus during discharge compared with that of charge. This work demonstrates a simple but effective strategy to stabilize the CAM/SSE interface in high mass loading ASSBs.

5.
ACS Appl Mater Interfaces ; 13(51): 61067-61077, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34910464

RESUMO

The fast Li+ transportation of "polymer-in-ceramic" electrolytes is highly dependent on the long-range Li+ migration pathways, which are determined by the structure and chemistry of the electrolytes. Besides, Li dendrite growth may be promoted in the soft polymer region due to the inhomogeneous electric field caused by the commonly low Li+ transference number of the polymer. Herein, a single-ion-conducting polymer electrolyte is infiltrated into intertwined Li1.3Al0.3Ti1.7(PO4)3 (LATP) nanofibers to construct free-standing electrolyte membranes. The composite electrolyte possesses a large electrochemical window exceeding 5 V, a high ionic conductivity of 0.31 mS cm-1 at ambient temperature, and an extraordinary Li+ transference number of 0.94. The hybrid electrolyte in the lithium symmetric cell shows stable Li plating/stripping up to 2000 h under 0.1 mA cm-2 without dendrite formation. The Li|hybrid electrolyte|LiFePO4 battery exhibits enhanced rate capability up to 1 C and a stable cycling performance with an initial discharge capacity of 131.8 mA h g-1 and a retention capacity of 122.7 mA h g-1 after 500 cycles at 0.5 C at ambient temperature. The improved electrochemical performance is attributed to the synergistic effects of the LATP nanofibers and the single-ion-conducting polymer. The fibrous fast ion conductors provide continuous ion transport channels, and the polymer improves the interfacial contact with the electrodes and helps to suppress the Li dendrites.

6.
ACS Appl Mater Interfaces ; 12(33): 37067-37078, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32687702

RESUMO

The rational design and exploration of safe, robust, and inexpensive energy storage systems with high flexibility are greatly desired for integrated wearable electronic devices. Herein, a flexible all-solid-state battery possessing competitive electrochemical performance and mechanical stability has been realized by easy manufacture processes using carbon nanotube enhanced phosphate electrodes of LiTi2(PO4)3 and Li3V2(PO4)3 and a highly conductive solid polymer electrolyte made of polyphosphazene/PVDF-HFP/LiBOB [PVDF-HFP, poly(vinylidene fluoride-co-hexafluoropropylene)]. The components were chosen based on their low toxicity, systematic manufacturability, and (electro-)chemical matching in order to ensure ambient atmosphere battery assembly and to reach high flexibility, good safety, effective interfacial contacts, and high chemical and mechanical stability for the battery while in operation. The high energy density of the electrodes was enabled by a novel design of the self-standing anode and cathode in a way that a large amount of active particles are embedded in the carbon nanotube (CNT) bunches and on the surface of CNT fabric, without binder additive, additional carbon, or a large metallic current collector. The electrodes showed outstanding performance individually in half-cells with liquid and polymer electrolyte, respectively. The prepared flexible all-solid-state battery exhibited good rate capability, and more than half of its theoretical capacity can be delivered even at 1C at 30 °C. Moreover, the capacity retentions are higher than 75% after 200 cycles at different current rates, and the battery showed smaller capacity fading after cycling at 50 °C. Furthermore, the promising practical possibilities of the battery concept and fabrication method were demonstrated by a prototype laminated flexible cell.

7.
iScience ; 19: 955-964, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31518903

RESUMO

Coupling of two oxygen-involved reactions at the opposite sides of an oxygen transport membrane (OTM) has demonstrated great potential for process intensification. However, the current cobalt- or iron-containing OTMs suffer from poor reduction tolerance, which are incompetent for membrane reactor working in low oxygen partial pressure (pO2). Here, we report for the first time a both Co- and Fe-free SrMg0.15Zr0.05Ti0.8O3-δ (SMZ-Ti) membrane that exhibits both superior reduction tolerance for 100 h in 20 vol.% H2/Ar and environment-induced mixed conductivity due to the modest reduction of Ti4+ to Ti3+ in low pO2. We further demonstrate that SMZ-Ti is ideally suited for membrane reactor where water splitting is coupled with methane reforming at the opposite sides to simultaneously obtain hydrogen and synthesis gas. These results extend the scope of mixed conducting materials to include titanates and open up new avenues for the design of chemically stable membrane materials for high-performance membrane reactors.

8.
ACS Appl Mater Interfaces ; 10(26): 22329-22339, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29888903

RESUMO

The development of high-capacity, high-performance all-solid-state batteries requires the specific design and optimization of its components, especially on the positive electrode side. For the first time, we were able to produce a completely inorganic mixed positive electrode consisting only of LiCoO2 and Ta-substituted Li7La3Zr2O12 (LLZ:Ta) without the use of additional sintering aids or conducting additives, which has a high theoretical capacity density of 1 mAh/cm2. A true all-solid-state cell composed of a Li metal negative electrode, a LLZ:Ta garnet electrolyte, and a 25 µm thick LLZ:Ta + LiCoO2 mixed positive electrode was manufactured and characterized. The cell shows 81% utilization of theoretical capacity upon discharging at elevated temperatures and rather high discharge rates of 0.1 mA (0.1 C). However, even though the room temperature performance is also among the highest reported so far for similar cells, it still falls far short of the theoretical values. Therefore, a 3D reconstruction of the manufactured mixed positive electrode was used for the first time as input for microstructure-resolved continuum simulations. The simulations are able to reproduce the electrochemical behavior at elevated temperature favorably, however fail completely to predict the performance loss at room temperature. Extensive parameter studies were performed to identify the limiting processes, and as a result, interface phenomena occurring at the cathode active material/solid-electrolyte interface were found to be the most probable cause for the low performance at room temperature. Furthermore, the simulations are used for a sound estimation of the optimization potential that can be realized with this type of cell, which provides important guidelines for future oxide based all-solid-state battery research and fabrication.

9.
Phys Chem Chem Phys ; 19(39): 26596-26605, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28948987

RESUMO

The Li+ ion transfer between a solid and a liquid Li+ electrolyte has been investigated by DC polarisation techniques. The current density i is measured as a function of the electrochemical potential drop Δ[small mu, Greek, tilde]Li+ at the interface, using a liquid electrolyte with different Li+ concentrations. The subject of this experimental study is the interface between the solid electrolyte Ta-substituted lithium lanthanum zirconate (Li6.6La3Zr1.6Ta0.4O12) and a liquid electrolyte consisting of LiPF6 dissolved in ethylene carbonate/dimethyl carbonate (1 : 1). The functional course of i vs. Δ[small mu, Greek, tilde]Li+ can be described by a serial connection between a constant ohmic resistance Rslei and a current dependent thermally activated ion transfer process. For the present solid-liquid electrolyte interface the areal resistance Rslei of the surface layer is independent of the Li+ concentration in the liquid electrolyte. At room temperature a value of about 300 Ω cm2 is found. The constant ohmic resistance Rslei can be attributed to a surface layer on the solid electrolyte with a (relatively) low conductivity (solid-liquid electrolyte interphase). The low conducting surface layer is formed by degradation reactions with the liquid electrolyte. Rslei is considerably increased if a small amount (ppm) of water is added to the liquid electrolyte. The thermally activated ionic transfer process obeys a Butler-Volmer like behaviour, resulting in an exchange current density i0 depending on the Li+ concentration in the liquid electrolyte by a power-law. At a Li+ concentration of 1 mol l-1 a value of 53.1 µA cm-2 is found. A charge transfer coefficient α of ∼0.44 is measured. The finding of a superposed constant ohmic resistance due to a solid-liquid electrolyte interphase and a current dependent thermally activated ion transfer process is confirmed by the results of two former experimental studies from the literature, performing AC measurements/EIS.

10.
ACS Appl Mater Interfaces ; 8(40): 26842-26850, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27642769

RESUMO

The reactivity of mixtures of high voltage spinel cathode materials Li2NiMn3O8, Li2FeMn3O8, and LiCoMnO4 cosintered with Li1.5Al0.5Ti1.5(PO4)3 and Li6.6La3Zr1.6Ta0.4O12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li6.6La3Zr1.6Ta0.4O12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li2MnO3 and then decompose to form stable and often insulating phases such as La2Zr2O7, La2O3, La3TaO7, TiO2, and LaMnO3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li1.5Al0.5Ti1.5(PO4)3 mixtures, the Mn tends to oxidize to MnO2 or Mn2O3, supplying lithium to the electrolyte for the formation of Li3PO4 and metal phosphates such as AlPO4 and LiMPO4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.

11.
ACS Appl Mater Interfaces ; 8(16): 10617-26, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27029789

RESUMO

Al-contaminated Ta-substituted Li7La3Zr2O12 (LLZ:Ta), synthesized via solid-state reaction, and Al-free Ta-substituted Li7La3Zr2O12, fabricated by hot-press sintering (HP-LLZ:Ta), have relative densities of 92.7% and 99.0%, respectively. Impedance spectra show the total conductivity of LLZ:Ta to be 0.71 mS cm(-1) at 30 °C and that of HP-LLZ:Ta to be 1.18 mS cm(-1). The lower total conductivity for LLZ:Ta than HP-LLZ:Ta was attributed to the higher grain boundary resistance and lower relative density of LLZ:Ta, as confirmed by their microstructures. Constant direct current measurements of HP-LLZ:Ta with a current density of 0.5 mA cm(-2) suggest that the short circuit formation was neither due to the low relative density of the samples nor the reduction of Li-Al glassy phase at grain boundaries. TEM, EELS, and MAS NMR were used to prove that the short circuit was from Li dendrite formation inside HP-LLZ:Ta, which took place along the grain boundaries. The Li dendrite formation was found to be mostly due to the inhomogeneous contact between LLZ solid electrolyte and Li electrodes. By flatting the surface of the LLZ:Ta pellets and using thin layers of Au buffer to improve the contact between LLZ:Ta and Li electrodes, the interface resistance could be dramatically reduced, which results in short-circuit-free cells when running a current density of 0.5 mA cm(-2) through the pellets. Temperature-dependent stepped current density galvanostatic cyclings were also carried out to determine the critical current densities for the short circuit formation. The short circuit that still occurred at higher current density is due to the inhomogeneous dissolution and deposition of metallic Li at the interfaces of Li electrodes and LLZ solid electrolyte when cycling the cell at large current densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...